
© 2023 Percona | All rights reserved.

All about MySQL Table Cache

1

Dmitry Lenev

Principal Software Engineer, Percona



© 2023 Percona | All rights reserved.

About me

2

● Been working in MySQL Ecosystem since 2003

● Former MySQL Server Runtime developer in Oracle
○ Trigger support
○ Metadata locking subsystem
○ Part of New Data-Dictionary team

● Principal Software Engineer in Percona



© 2023 Percona | All rights reserved. 3

Why Table Cache is needed?
A statement which uses a table needs to:
● Load table metadata from the data-dictionary 

(tables or .FRM)
● Open table in Storage Engine

○ Open files
○ Read headers
○ Read statistics
○ …

Expensive for each statement ⇒ caching!



© 2023 Percona | All rights reserved.

What Table Cache contains?

4

● TABLE objects kept in cache represent:
○ open table
○ also cursor
○ record buffers
○ list of triggers

● Each connection and each use in statement 
need their own object:
⇒ Multiple TABLE objects for the same table can be 
needed at the same time
⇒ Lots of cache entries

● Cache entries can be large!



© 2023 Percona | All rights reserved. 5

How it works?
- Keep open table entries in cache after statement 

end
- Next statements will re-use them if possible

- There is soft upper limit on cache size
- If exceeded unused entries are exceeded according to 

LRU

- FLUSH TABLES and its variants wipe the cache

- Different connections/threads use different 
partitions of the Table Cache



© 2023 Percona | All rights reserved.

Knobs

6

The main control knob:
--table_open_cache option/variable

● Dynamic
● Default: 4000 (8.0)
● Affected by open_files_limit and max_connections

For bigger systems:
--open_table_cache_instances option

● Start-up only
● Default: 16 (8.0)

⚠ For MariaDB they work differently ⚠



© 2023 Percona | All rights reserved. 7

Gauges for cache effectiveness
Status variables:
● Open_tables
● Opened_tables
● Table_open_cache_hits
● Table_open_cache_misses
● Table_open_cache_overflows

Problems are often visible in P_S tables:
● ‘Opening tables’ state in performance_schema.processlist
● ‘stage/sql/Opening tables’ in events_stages_* tables



© 2023 Percona | All rights reserved.

Gauges for memory consumption

8

Memory usage for TABLE objects reflected as 
‘memory/sql/TABLE’ event in P_S memory usage tables:
SELECT * FROM 
performance_schema.memory_summary_global_by_event_name
WHERE event_name = ’memory/sql/TABLE’;

Memory usage by triggers stored along with Table Cache 
entries is reflected as part of 
‘memory/sql/sp_head::main_mem_root’ event:
SELECT * FROM 
performance_schema.memory_summary_global_by_event_name WHERE 
event_name = ’memory/sql/sp_head::main_mem_root’;



© 2023 Percona | All rights reserved. 9

Gauges for cache contention
Contention on Table Cache partitions is visible as 
increased waits for LOCK_table_cache mutexes in P_S 
waits tables:
SELECT * FROM 
performance_schema.events_waits_summary_global_by_event_name
WHERE event_name = 'wait/synch/mutex/sql/LOCK_table_cache';

Also often visible in P_S process and stages tables (look for 
‘Opening tables’ state and stage).



© 2023 Percona | All rights reserved.

New knobs and gauges in Percona Server 8.0.31

10

● On-demand loading of triggers for TABLE objects (allows 
to avoid loading them for read-only statements)

● --table_open_cache_triggers option/variable to limit 
the number of TABLE objects with triggers in cache: 
○ Dynamic
○ Default: 524288 (i.e. disabled)

● Status variables:
○ Table_open_cache_triggers_hits
○ Table_open_cache_triggers_misses
○ Table_open_cache_triggers_overflows



© 2023 Percona | All rights reserved. 11

Table Definition Cache
Introduced to avoid reading from .FRM file (now from the data- 
dictionary) each time a table is opened for Table Cache:
● Stores TABLE_SHARE objects representing table definitions
● Only one TABLE_SHARE object for each table

● There is soft upper limit on cache size
- TABLE_SHARE objects considered as used if there are corresponding 

TABLE objects in the Table Cache
- If exceeded unused entries are exceeded according to LRU

● FLUSH TABLES and its variants wipe out the cache

● Not partitioned, protected by single lock (infamous LOCK_open) 



© 2023 Percona | All rights reserved.

TDC - Knobs and Gauges

12

The only knob: --table_definition_cache option/variable
● Dynamic
● Default: 2000 (8.0)
● Affected by --table_open_cache value

Gauges:
● Status variables:

● Open_table_definitions
● Opened_table_definitions

● Memory consumption by TABLE_SHARE objects:
SELECT * FROM 
performance_schema.memory_summary_global_by_event_name
WHERE event_name = ’memory/sql/TABLE_SHARE::mem_root’;



© 2023 Percona | All rights reserved. 13

Dictionary Cache
● Introduced in 8.0 as part of New Data-Dictionary project

● Stores data-dictionary objects of various types
● Has different partitions for different types

● For tables serves as a caching layer below Table and Table Definition 
Caches

● Used directly by some subsystems (e.g. InnoDB SE)

● For Table partition max capacity controlled by --max_connections
● Uses LRU strategy for eviction

● No opportunities for tuning, no observability (except profilers)!

● No issues in common use-cases known.



© 2023 Percona | All rights reserved.

Typical Problems - Affected Workloads

14

Scenarios in which performance/scalability 
issues with Table Cache typically show up:

● Quick, small queries
○ PK lookups
○ Range lookups
○ Simple, well-indexed joins
○ …

● Lots of them
● Concurrency

Memory consumption issues can be observed for 
more generic workloads.



© 2023 Percona | All rights reserved. 15

Problem 1: Cache is too small
What does user see?
● System doesn’t perform/is slower than expected

Why?
● Working set doesn’t fit into table cache

● workload bigger than default cache size
● misconfiguration
● effect of open_files_limit

Indicators:
● table_open_cache_misses/overflows counters are high and growing
● open_tables value is close to table_open_cache

Solution: increase table_open_cache value!



© 2023 Percona | All rights reserved.

Problem 2: Cache is wiped out

16

What does user see?
● Occasional drops in performance

Why?
● Table Cache is wiped out and has to be repopulated again

● Due to FLUSH TABLES and variants (backup!)
● I_S queries that need to open lots of tables (5.7)

Indicators:
● Spikes and drops in table_open_cache_misses/hits
● Occasional drops in open_tables value

Solution:
● Avoid FLUSH TABLES (xtrabackup, improved mysqldump –single-transaction support in PS)

● Upgrade to 8.0 (in case of I_S problem)



© 2023 Percona | All rights reserved. 17

Problem 3: Cache is too big
What does user see?
● Server consumes too much memory (OOM, swapping)

Why?
● Table Cache occupies too much memory

● Lots of connections/tables
● Wide records
● Triggers (many or big)

Indicators:
● ‘memory/sql/TABLE’ event in P_S.memory_summary_global_by_event_name
● ‘memory/sql/sp_head::main_mem_root’ (for triggers, includes routines!)

Solutions:
● consider decreasing cache size
● --table_open_cache_triggers in Percona 8.0.31
● tricks (change column types, move triggers bodies to routines)



© 2023 Percona | All rights reserved.

Problem 4: Contention on Table Cache

18

What does user see?
● System doesn’t perform well enough under concurrent load

Why?
● Lock protecting Table Cache partition becomes point of contention when

● Size of table cache is sufficient
● Workload consisting of short statements
● Lots of connections (1K+)
● Bigger machines (multi-CPU/cores)

Indicators:
● table_open_cache_misses is low
● ‘wait/synch/mutex/sql/LOCK_table_cache’ event in 

P_S.events_waits_summary_global_by_event_name

Solution: Increase --open_cache_table_instances (⚠ MariaDB) 



© 2023 Percona | All rights reserved. 19

Table Definition Cache Problems
1. Cache is too small

● Might occur (lots of tables, misconfiguration)
● In practice hard to notice because of Table Cache presence
● Increase --table_definition_cache value if really necessary

2. Cache is wiped out
● Affects TDC similarly to Table Cache
● Same advice as for Table Cache (avoid FLUSH TABLES, upgrade to 8.0)

3. Cache is too big
● Mostly irrelevant, since there is only one object for each table

4. Contention on Table Definition Cache
● Doesn’t happen if Table Cache properly configured



© 2023 Percona | All rights reserved. 20

Final word of caution
● Normally defaults of modern 

versions work well!

● Do not fiddle with Table Cache 
options unless you see a problem or 
have pretty special case (fast queries/ lots 
of connections/big working set, memory constraints)



© 2023 Percona | All rights reserved. 21

Percona is a world-class open source database software, 
support, and services company focused on helping you scale 
and innovate with speed as you grow.

100K+
Blog Views Per Month

83M+
Software Downloads
TTM as of November 2022

800+
Customers

40%
YoY MRR Growth

As of Q4 2021

Trusted by…

4 of the top 6
Retailers

More than a third 
of the Fortune 50

3 of the top 5 
Healthcare 
Companies

9 of the top 10 
Tech Companies

6 of the top 10 
Gaming 
Companies

4 of the top 5 
Manufacturing 
Companies



© 2023 Percona | All rights reserved.

dmitry.lenev@percona.com

Dmitry Lenev
Principal Software Engineer, Percona

22

Thank You!

percona.com


